RTCM Paper 091-2018-SC134-010

"High Integrity GNSS location and navigation services for Connected Vehicles and Autonomous Vehicles"

Alessandro NERI^{1,2}

¹Università ROMA TRE, ²RadioLabs

GNSS role in autonomous vehicles

eCall

ADAS

All Weather Conds.

Safe Driving

Stolen

Vehicle

Recovery

Navigation

Autonomous driving technology requires position and navigation

Stolen Vehicle Recovery Navigation Navigation Insurance Telematics

HIGH ACCURACY

HIGH INTEGRITY

NO individual technology can currently meet these requirements anywhere, anytime and under any condition, requirements.

sensor fusion is

considered as the go-tosolution for the development of fully autonomous driving technology. **GNSS** is an element of a sensor fusion based navigation system that includes LiDARs/Radars, Inertial sensors and cameras.

Insurance

Telematics

USE CASES

Use Cases: eCall

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
eCall Pan-European eCall generates an automatic 112 emergency call and transmits an MSD containing the absolute position of the damaged vehicle At the PSAP, map- matching is performed to determine the physical location of the accident to which the emergency vehicles are dispatched All roads, all environments	 Probability of correct detection of the road (> 99%) Probability of correct detection of the carriageway (> 95%) Accuracy (95th percentile) of the longitudinal position along the road (< 50 m) 	 position at the triggering moment (mandatory) vehicle direction, or heading (mandatory) previous 3 positions, with no time tag for privacy reasons (optional) confidence bit (optional) From other sources: 	 Map-matching (at the carriageway level) performed off-line at the PSAP
		road network	S 3

RTCM Paper 091-2018-SC134-010

Call

3

Use Cases: Road User Charging

operational scenario	indicators (indicative targets)	the application	processing
 Road User Charging Area-based charging of Paying to drive in a particular area irrespective of the distance driven, Distance-based charging – paying an amount that is proportional to the distance driven. Time-based charging – paying an amount that is proportional to the distance driven. Time-based charging – paying an amount that is proportional to the time spent in a particular area. not deep urban 	E2E overcharging rate (for a travelled segment) (< 10-6) E2E undercharging rate (for a travelled segment) (< 3%)	 position, time (mandatory) velocity (optional) integrity quantities (optional) External sources: location of charging points, map of road network 	 Geofencing on a geo-object built around the charging point Map-matching (optional)

Use Cases: COOPERATIVE COLLISION AVOIDANCE

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
 Cooperative Collision Avoidance Risk situations: vs. another vehicle, vs. other dynamic obstacles, vs. static obstacles e.g.: Pre-crash sensing warning Across traffic turn collision risk Morging traffic turn 	 Trajectory handshake latency (<100 msec) Trajectory Handshake loss rate (< 10-5) Status message latency (<10 msec) Status message loss rate (< 10-3) 	 Vehicles and Road users position, speed, direction (heading) static obstacles position, 	 extrapolation of the trajectories and their uncertainties from the current pose and estimation of the risk of collision
 Merging traffic turn collision risk Intersection collision risk Forward collision risk Hazardous location notification 	 Position accuracy (< 30 cm) Status message rate (> 10 Hz) 		
	RTCM Paper 091-2	2018-SC134-010	Radiceabs

Use Cases: Automated Overtake

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
Automated Overtake	 Trajectory handshake latency (<100 msec) Trajectory Handshake loss rate (< 10-5) Status message latency (<10 msec) Status message loss rate (< 10-3) Position accuracy (< 30 cm) 	 Vehicles and Road users position, speed, direction (heading) yaw rate static obstacles position, 	 extrapolation of the trajectories and their uncertainties from the current pose and estimation of the risk of collision

Use Cases: Road Hazard Warning

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
 Road Hazard Warning Emergency Electronic Break Light Safety function out of normal condition warning Roadwork warning Decentralized floating car data 	 Status message latency (<10 msec) Status message rate (> 100 Hz) Status message loss rate (< 10-6) Position accuracy (< 30 cm) 	 Vehicles position, speed, direction (heading) yaw rate 	

Use Cases: Co-operative Awareness

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
 Co-operative Awareness Emergency vehicle warning Slow vehicle warning Motorcycle warning 	 Status message latency (<100 msec) Status message rate (emergency vehicle > 10 Hz) (slow vehicle and motorcycle > 2 Hz) Status message loss rate (< 10-6) Position accuracy (< 30 cm) 	 Vehicles position, speed, direction (heading) yaw rate 	

Use Cases: Traffic hazards warning

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
 Traffic hazards warning Wrong way driving warning Stationary vehicle warning Traffic condition warning Signal violation warning 	 Status message latency (<100 msec) Status message rate (> 10 Hz) Status message loss rate (< 10-6) Position accuracy (< 30 cm) 	 Vehicles position, speed, direction (heading) yaw rate 	

Use Cases: Dynamic vehicle warning

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
 Dynamic vehicle warning Overtaking vehicle warning Lane change assistance Co-operative merging assistance 	 Status message latency (<100 msec) Status message rate (> 10 Hz) Status message loss rate (< 10-6) Position accuracy (< 30 cm) 	 Vehicles position, speed, direction (heading) yaw rate 	

Use Cases: High Density Platooning

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
High Density Platooning Vehicles will be driving very close to each other.	 Status message latency (<10 msec) Status message loss rate (< 10⁻⁶) Position accuracy (< 30 cm) 	 Vehicles and Road users position, speed, acceleration direction (heading) yaw rate static obstacles position, 	 extrapolation of the trajectories and their uncertainties from the current pose and estimation of the risk of collision

Use Cases: Vulnerable Road User Discovery

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
Vulnerable Road User Discovery VRUs equipped with a GNSS receiver announce their presence by broadcasting their status	 Missed Discovery rate (< 10-6) False Discovery rate (<10-4) Status message latency (<10 msec) Status message loss rate (< 10-6) Position accuracy (< 10 cm) 	 Vehicles and Road users position, speed, direction (heading) static obstacles position, 	 extrapolation of the trajectories and their uncertainties from the current pose and estimation of the risk of collision

Use Cases: ISA - Intelligent Speed Adaptation

Use case & operational scenario	E2E performance indicators (indicative targets)	Information needed by the application	Application data processing
ISA - Intelligent Speed Adaptation The driving speed is monitored and compared with the prevailing speed limit on the road (or the lane) the vehicle is on	 Percentage of speed transitions correctly detected (< 99%) Percentage of speed transitions falsely detected (<0.1%) Percentage of speed transitions not detected (< 1%) within a defined duration or distance from a transition reference point (10 m) 	 Vehicle position, speed, time From other sources: Digital map with speed limit information traffic weather information 	 Real-time longitudinal map- matching Map-matching on- lane Driving speed extraction from GNSS data or the vehicle's speedometer Time synchronization (for variable speed limits)

Use Cases

RTCM Paper 091-2018-SC134-010

Kay Massow and Ilja Radusch, "A Rapid Prototyping Environment for Cooperative Advanced Driver Assistance Systems," Journal of Advanced Transportation, vol. 2018, Article ID 2586520, 2018.

Levels of Cooperative Behaviour

0 Non-Cooperative Behavior Implicit communication Optimizes own utility		
MB1 Cooperative Planning Implicit communication Optimizes estimated biased total utility	 IB1 Cooperative Perception Explicit communication of Sensor data & state information Optimizes own utility Tightly coupled perception 	
	 IB2 Cooperative Prediction Explicit communication of Sensor data & state information Intentions & maneuvers Optimizes own utility Tightly coupled perception & prediction 	
 MB2 Negotiated Cooperation Explicit communication of Sensor data& state information, Intentions & maneuvers Maneuver options & associated utilities Optimizes biased total utility Tightly coupled perception, prediction & planning 		
 MB3 Collaboration Explicit communication of Sensor data & state information, Intentions & maneuvers Maneuver options & associated utilities Optimizes fair total utility Tightly coupled system 		

C. Burger, P. F. Orzechowski, Ö. Ş. Taş and C. Stiller, "Rating cooperative driving: A scheme for behavior assessment," *2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)*, Yokohama, 2017, pp. 1-6.

Overtaking Scenario

M. Vasic, G. Lederrey, I. Navarro and A. Martinoli, "An overtaking decision algorithm for networked intelligent vehicles based on cooperative perception," 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, 2016, pp. 1054-1059.

The Overtaking Risk is associated to the probability that an oncoming vehicle will occupy the overtaking lane

$$d_{over} = \frac{1}{2}a_{E}t_{over}^{2} + v_{E}t_{over} \qquad \hat{L}_{over} + k_{L}\sigma_{L} + L_{margin} = \frac{1}{2}a_{E}t_{over}^{2} + (v_{E} - v_{L})t_{over} + k_{v}\sigma_{\Delta v}t_{over} \\ d_{exp} = d_{i} - v_{O}t_{exp} \qquad \hat{d}_{exp} - k_{d}\sigma_{d_{exp}} \ge \hat{L}_{over} + k_{L}\sigma_{L} + L_{margin}$$

Cooperative Overtaking Scenario

M. Vasic, G. Lederrey, I. Navarro and A. Martinoli, "An overtaking decision algorithm for networked intelligent vehicles based on cooperative perception," 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, 2016, pp. 1054-1059.

The Overtaking Risk is associated to the probability that an oncoming vehicle will occupy the overtaking lane

$$d_{over} = \frac{1}{2}a_{E}t_{over}^{2} + v_{E}t_{over}$$

$$\hat{L}_{over} + k_{L}\sigma_{L} + L_{margin} = \frac{1}{2}(a_{E} + a_{O})t_{over}^{2} + (v_{E} - v_{L})t_{over} + k_{v}\sigma_{\Delta v}t_{over}$$

$$d_{exp} = d_{i} - v_{O}t_{exp} + \frac{1}{2}a_{O}t_{exp}^{2}$$

$$\hat{d}_{exp} - k_{d}\sigma_{d_{exp}} \ge \hat{L}_{over} + k_{L}\sigma_{L} + L_{margin}$$

SAE J2735 Messages

SURFACE VEHICLE STANDARD	J2735™		MAR2016
	Issued 2015-09 Revised 2016-03 Superseding J2735 JAN2016		
Dedicated Short Range Communicati	ons (DSRC) Messag	ge Set Dicti	onary

- Message Frame
- Basic Safety Message
- Common Safety Request
- Emergency Vehicle Alert
- Intersection Collision Avoidance
- MapData
- NMEA corrections
- Personal Safety Message
- Probe Data Management
- Probe Vehicle Data

• Road Side Alert

RTCM corrections

- Signa IPhase And Timing
- Signal Request Message
- Signal Status Message
- Traveler Information Message
- Test Message
- <Basicl nformation Message>

SAE J2735: MSG_RTCMcorrections

«Use: The RTCM Corrections message is used to encapsulate RTCM differential corrections for GPS and other radio navigation signals as defined by the RTCM (Radio Technical Commission For Maritime Services) special committee number 104 in its various standards. Here, in the work of DSRC, these messages are "wrapped" for transport on the DSRC media, and then can be re-constructed back into the final expected formats defined by the RTCM standard and used directly by various positioning systems to increase the absolute and relative accuracy estimates produced.»

SAFETY CRITICAL Requirements

КРІ	Value
Position accuracy	< 30 cm
Speed accuracy	?
Trajectory handshake latency	<100 msec
Status message latency	<10 msec
Status message loss rate	< 10 ⁻⁶
Status message rate	> 10 Hz

ELECTRONIC HORIZON

Vehicles and Road users

- Position, speed
- acceleration
- direction (heading)
- Yaw rate

Static obstacles

• Position

Infrastructure

 High Accuracy Digital map

From other sources

- traffic
- weather information

AUTOMOTIVE Reference Architecture

- 1. Based on Road Environment **MODELLING**
- 2. Candidate solution(s) Architecture derived from Rail (RHINOS)
 - Integrity Monitoring and Augmentation System Reference Architecture
 - On Board System Reference Architecture
 - Local hazards detection and effects mitigation,

Reference GNSS Local Augmentation Architecture

OBU: PVT Solution + ARAIM

Thank you for your attention

